<div dir="ltr"><div><span style="font-family:tahoma,sans-serif"><font size="2"><u>Fecha</u>: Miércoles 28 de septiembre de 2022 a las 13h15.</font></span></div><div><u><font size="2">Lugar</font></u><font size="2">: Auditorio Alfonso Nápoles Gándara, Instituto de Matemáticas. </font><span style="font-family:tahoma,sans-serif"></span></div><div><span style="font-family:tahoma,sans-serif"><br></span></div><div><span style="font-family:tahoma,sans-serif"><u>Expositor</u>: <a href="https://statistics.berkeley.edu/people/sebastian-hummel">Sebastian Hummel </a>
<br>
Department of Statistics
<br>
University of California, Berkeley.</span></div><div><span style="font-family:tahoma,sans-serif"><br></span></div><div><span style="font-family:tahoma,sans-serif"><u>Título</u>: "Boundary behavior of the Λ-Wright--Fisher process with selection"</span></div><div><span style="font-family:tahoma,sans-serif"><u>Abstract</u>: Λ-Wright--Fisher processes provide an important modeling framework
within mathematical population genetics. We present a variety of
parameter-dependent long-term behaviors for a broad class of such
processes and explain how to discriminate the different boundary
behaviors by explicit criteria. In particular, we describe situations in
which both boundary points are asymptotically inaccessible – an
apparently new phenomenon in this context. This has interesting
biological implications, because it leads to a class of stochastic
population models in which selection alone can maintain genetic
variation. If at least one boundary point is asymptotically accessible,
we derive decay rates for the probability that the boundary is not
essentially accessed. To prove this result, we establish and employ
Siegmund duality. The dual process can be sandwiched at the boundary in
between two transformed Lévy processes. This allows us to relate the
boundary behavior of the dual to fluctuation properties of the Lévy
processes and it sheds new light on previously established accessibility
conditions. This is joint work with Fernando Cordero and Grégoire
Véchambre.
</span></div><div><div dir="ltr"><span style="font-family:tahoma,sans-serif"><font size="2">Organizan</font></span></div><div dir="ltr"><div><span style="font-family:tahoma,sans-serif"><font size="2"><span class="gmail_default"></span>Laura Eslava<br></font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2">María Clara Fittipaldi</font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2">Saraí Hernández-Torres.<br></font></span></div><div><span style="font-family:tahoma,sans-serif"><br></span><div><span style="font-family:tahoma,sans-serif"><font size="2">
Página web:</font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2"><a href="http://www.matem.unam.mx/~seminarioproba/" rel="nofollow" target="_blank">http://www.matem.unam.mx/~seminarioproba/</a></font></span></div></div></div></div><div><span style="font-family:tahoma,sans-serif"><font size="2"><br><br></font></span></div></div>