<div dir="ltr"><div dir="ltr"><div><div><div><div><span style="font-family:tahoma,sans-serif"><font size="2">Miércoles 31 de Agosto de 2022 a las 13h15, <br></font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2">Auditorio Carlos Graef (Edificio Amoxcalli)<br></font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2">Facultad de Ciencias.</font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2"><br></font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2"><a href="https://sites.google.com/view/natalia-cardona-tobon/home-page" target="_blank">Natalia Cardona-Tobón</a>
<br>
Institute of Mathematical Stochastics
<br>
University of Göttingen
</font></span><span style="font-family:tahoma,sans-serif"></span></div></div></div></div><div><span style="font-family:tahoma,sans-serif"><font size="2"><br></font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2">Nos
hablará sobre "The contact process with fitness on Galton-Watson trees<span class="gmail_default">".</span></font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2"><span class="gmail_default"><br></span></font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2"><span class="gmail_default"></span>Abstract:<span> The contact process is a simple model for the
spread of an infection in a structured population. We consider a variant
of the contact process, where vertices are equipped with a random
fitness representing inhomogeneities among individuals. <span>In
this inhomogeneous contact process, the infection is passed along an
edge with rate proportional to the product of the fitness values of the
vertices on either end. We assume that the underlying population
structure is given by a Galton-Watson tree.</span><span> Recent
works by Huang/Durrett and Bhamidi et al have given necessary and
sufficient conditions on the offspring distribution for the
classic contact process to exhibit a phase transition. In this spirit,
we give sufficient conditions on the </span>fitness and offspring
distribution for the contact process with fitness on Galton-Watson
trees that either guarantee that there is a phase transition or that the
process is always supercritical. In particular, we can see that we need
to consider the combined effect of fitness and
offspring distribution to decide which scenario occurs. This is joint
work with Marcel Ortgiese (University of Bath). <br></span></font></span><div><div dir="auto"><span style="font-family:tahoma,sans-serif"><font size="2"><br></font></span></div></div><span style="font-family:tahoma,sans-serif"></span></div></div><div dir="ltr"><span style="font-family:tahoma,sans-serif"><font size="2">Organizan</font></span></div><div dir="ltr"><div><span style="font-family:tahoma,sans-serif"><font size="2"><span class="gmail_default"></span>Laura Eslava<br></font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2">María Clara Fittipaldi</font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2">Saraí Hernández-Torres.<br></font></span></div><div><span style="font-family:tahoma,sans-serif"></span><br><span style="font-family:tahoma,sans-serif"></span><div><span style="font-family:tahoma,sans-serif"><font size="2">
Página web:</font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2"><a href="http://www.matem.unam.mx/~seminarioproba/" rel="nofollow" target="_blank">http://www.matem.unam.mx/~seminarioproba/</a></font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2"><br><br></font></span></div></div></div></div>