<div dir="ltr"><div style="font-family:tahoma,sans-serif" class="gmail_default"><div dir="ltr"><div class="gmail_default" style="font-family:tahoma,sans-serif"><div dir="ltr"><div><div style="font-family:tahoma,sans-serif" class="gmail_default"><div><div style="font-family:tahoma,sans-serif" class="gmail_default"><font size="2">Miércoles 6 de Noviembre las 13h15, <br></font>Salón S-104 <br> Departamento de Matemáticas <div><font size="2"><br></font></div><div><span class="gmail_default" style="font-family:tahoma,sans-serif"></span></div></div></div></div></div><div><span class="gmail_default" style="font-family:tahoma,sans-serif"> <a href="http://camillemale.com/" style="text-decoration:none" id="gmail-m_-3027995205803197751gmail-m_2471355482432411990gmail-m_-4458466030475083544gmail-docs-internal-guid-36199459-7fff-98f1-a513-14be45c4f729" target="_blank"><span style="font-size:11pt;font-family:Arial;color:rgb(17,85,204);background-color:transparent;font-weight:400;font-style:normal;font-variant:normal;text-decoration:underline;vertical-align:baseline;white-space:pre-wrap">Camille Male</span></a></span><br></div><div>Institut de Mathématiques de Bordeaux<span class="gmail_default" style="font-family:tahoma,sans-serif"></span></div><div><span class="gmail_default" style="font-family:tahoma,sans-serif"><br></span></div><div>Nos
hablará sobre "<span class="gmail_default" style="font-family:tahoma,sans-serif"></span>Asymptotic freeness over the diagonal of large random matrices".</div><div><br></div><div>Abstract: <span class="gmail_default" style="font-family:tahoma,sans-serif"></span><div>I will discuss the problem of computing the eigenvalues
distribution of polynomials in random matrices, in the limit where the
size of the matrices goes to infinity. In this context, Voiculescu's
Free Probability Theory gives analytic tools to consider this question
when the random matrices are in "generic position", in particular when
they are invariant by conjugation by unitary matrices. Here we work
under a much weaker assumption, assuming only that the random matrices
are invariant in law by conjugation by permutation matrices. This
requires a more general method, known as Traffic Probability Theory.
Since recently, with this approach we were only able to give a
combinatorial description for the moments of the limit eigenvalues
distribution. More recently, we discovered that freeness in the sense of
traffics implies Voiculescu's notion of freeness with amalgamation over
the diagonal. In particular, this yields new numerical methods to
compute limiting eigenvalues distributions.</div><div><br></div></div></div><div dir="ltr"><font size="2">Organizan</font></div><div dir="ltr"><font size="2"><font size="2">Manuel Domínguez de la Iglesia</font></font><div><div class="gmail_default" style="font-family:tahoma,sans-serif"><font size="2">
María Clara Fittipaldi<br>
Arno Siri-Jégousse<br></font>
<font size="2"><br>
Página web:</font></div><div class="gmail_default" style="font-family:tahoma,sans-serif"><font size="2"><a href="http://www.matem.unam.mx/~seminarioproba/" target="_blank">http://www.matem.unam.mx/~seminarioproba/</a></font></div><div class="gmail_default" style="font-family:tahoma,sans-serif"><br></div><div class="gmail_default" style="font-family:tahoma,sans-serif"><font size="2">
Para suscribirse a la lista de distribución entrar a:</font><font size="2"><br></font>
<font size="2"><a href="http://higgs.matem.unam.mx/cgi-bin/mailman/listinfo/seminarioprobabilidadyprocesos" rel="noreferrer" target="_blank">http://higgs.matem.unam.mx/cgi-bin/mailman/listinfo/seminarioprobabilidadyprocesos</a><br></font>
<font size="2"><br>
y seguir el procedimiento.</font></div></div></div></div></div></div></div>