<div dir="ltr"><div><span style="font-family:tahoma,sans-serif"><br></span></div><div><div dir="ltr"><div><div><div><div><span style="font-family:tahoma,sans-serif"><font size="2">Miércoles 18 de Septiembre a las 13h15, <br></font>Auditorio Alfonso Nápoles Gándara <br> IMATE <br></span></div><div><span style="font-family:tahoma,sans-serif"><br></span></div><span style="font-family:tahoma,sans-serif"><a href="https://www.turing.ac.uk/people/researchers/veno-mramor">Veno Mramor </a>
<br> Department of Statistics, University of Warwick
<br> & The Alan Turing Institute, UK</span></div></div></div><div><span style="font-family:tahoma,sans-serif"><br></span></div><div><span style="font-family:tahoma,sans-serif">Nos
hablará sobre "Projections and simulation of spherical Brownian motion<span class="gmail_default">".</span></span></div><div><span style="font-family:tahoma,sans-serif"><span class="gmail_default"></span>Abstract: We study a process given by the first n coordinates of a Brownian
motion on the unit sphere in the (n+l)-dimensional Euclidean space and
obtain a stochastic differential equation (SDE) it satisfies. The SDE
has non-Lipschitz coefficients but we are able to provide an analysis
of existence and pathwise uniqueness and show that they always hold.
The square of the radial component is a Wright-Fisher diffusion with
mutation and it features in a skew-product decomposition of the
projected spherical Brownian motion. The uniqueness results and the
skew-product decomposition are considered and proved for a more
general SDE on the unit ball in the n-dimensional Euclidean space. The
skew-product decomposition suggests a simulation algorithm for the
increments of the spherical Brownian motion and a simplification
reduces it to the simulation of Wright-Fisher diffusions. We use a
recent algorithm for an exact simulation of Wright-Fisher diffusions
given by Jenkins & Spanò (2017) to obtain an efficient algorithm for
the increments of spherical Brownian motion allowing a wide range of
time-steps.
<span class="gmail_default"></span></span></div><div><span style="font-family:tahoma,sans-serif"><br></span></div></div><div dir="ltr"><span style="font-family:tahoma,sans-serif"><font size="2">Organizan</font></span></div><div dir="ltr"><div class="gmail_default"><span style="font-family:tahoma,sans-serif"><font size="2"><span class="gmail_default"></span>Manuel Domínguez de la Iglesia</font></span></div><div><div><span style="font-family:tahoma,sans-serif"><font size="2">
María Clara Fittipaldi<br>
Arno Siri-Jégousse<br></font></span>
<span style="font-family:tahoma,sans-serif"><font size="2"><br>
Página web:</font></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2"><a href="http://www.matem.unam.mx/~seminarioproba/" rel="nofollow" target="_blank">http://www.matem.unam.mx/~seminarioproba/</a></font></span></div><div><span style="font-family:tahoma,sans-serif"><br></span></div><div><span style="font-family:tahoma,sans-serif"><font size="2">
Para suscribirse a la lista de distribución entrar a:</font><font size="2"><br></font></span>
<span style="font-family:tahoma,sans-serif"><font size="2"><a href="http://higgs.matem.unam.mx/cgi-bin/mailman/listinfo/seminarioprobabilidadyprocesos" rel="nofollow" target="_blank">http://higgs.matem.unam.mx/cgi-bin/mailman/listinfo/seminarioprobabilidadyprocesos</a><br></font></span>
<span style="font-family:tahoma,sans-serif"><font size="2"><br>
y seguir el procedimiento</font></span></div></div></div></div></div>